Some reflections on directed lattice paths

نویسندگان

  • Cyril Banderier
  • Michael Wallner
چکیده

This article analyzes directed lattice paths, when a boundary reflecting or absorbing condition is added to the classical models. The lattice paths are characterized by two time-independent sets of rules (also called steps) which have a privileged direction of increase and are therefore essentially one-dimensional objects. Depending on the spatial coordinate, one of the two sets of rules applies, namely one for altitude 0 and one for altitude bigger than 0. The abscissa y = 0 thus acts as a border which either absorbs or reflects steps. The absorption model corresponds to the model analyzed by Banderier and Flajolet (“Analytic combinatorics of directed lattice paths”), while the reflecting model leads to a more complicated situation. We show how the generating functions are then modified: the kernel method strikes again but here it unfortunately does not give a nice product formula. This makes the analysis more challenging, and, in the case of Łukasiewicz walks, we give the asymptotics for the number of excursions, arches and meanders. Limit laws for the number of returns to 0 of excursions are given. We also compute the limit laws of the final altitude of meanders. The full analytic situation is more complicated than the Banderier–Flajolet model (partly because new “critical compositions” appear, forcing us to introduce new key quantities, like the drift at 0), and we quantify to what extent the global drift, and the drift at 0 play a role in the “universal” behavior of such walks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on $L$-complete lattices

The paper deals with special types of $L$-ordered sets, $L$-fuzzy complete lattices, and fuzzy directed complete posets.First, a theorem for constructing monotone maps is proved, a characterization for monotone maps on an $L$-fuzzy complete lattice is obtained, and it's proved that if $f$ is a monotone map on an $L$-fuzzy complete lattice $(P;e)$, then the least fixpoint of $f$ is meet of a spe...

متن کامل

Counting Lattice Paths

Counting lattice paths Maciej Dziemiańczuk A lattice path is a finite sequence of points p0, p1, . . . , pn in Z × Z, and a step of the path is the difference between two of its consecutive points, i.e., pi−pi−1. In this thesis, we consider lattice paths running between two fixed points and for which the set of allowable steps contains the vertical step (0,−1) and some number (possibly infinite...

متن کامل

Lattice paths: vicious walkers and friendly walkers

In an earlier paper [4] the problem of vicious random walkers on a d-dimensional directed lattice was considered. \Vicious walkers" describes the situation in which two or more walkers arriving at the same lattice site annihilate one another. Accordingly, the only allowed con gurations are those in which contacts are forbidden. Alternatively expressed as a static rather than dynamic problem, vi...

متن کامل

Lattice paths below a line of rational slope

Abstract We analyse some enumerative and asymptotic properties of lattice paths below a line of rational slope. We illustrate our approach with Dyck paths under a line of slope 2/5. This answers Knuth’s problem #4 from his “Flajolet lecture” during the conference “Analysis of Algorithms” (AofA’2014) in Paris in June 2014. Our approach extends the work of Banderier and Flajolet for asymptotics a...

متن کامل

Restricted shortest paths in 2-circulant graphs

Semi-directed 2-circulant graph is a subgraph of an (undirected) 2-circulant graph in which the links of one type (i.e., short or long) are directed while the other links are undirected. The shortest paths in semi-directed circulant graphs are called the restricted shortest paths in 2-circulant graphs. In this paper we show that the problem of finding the restricted shortest paths is equivalent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1605.01687  شماره 

صفحات  -

تاریخ انتشار 2016